Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

trans-Dichloridobis(propane-1,3-diamine- $\kappa^{2} N, N^{\prime}$)chromium(III) perchlorate

Jong-Ha Choi ${ }^{\text {a }}$ and William Clegg ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Department of Chemistry, Andong National University, Andong 760-749, Republic of Korea, and ${ }^{\mathbf{b}}$ School of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, England
Correspondence e-mail: w.clegg@ncl.ac.uk

Received 7 February 2011; accepted 19 February 2011

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$;
R factor $=0.028 ; w R$ factor $=0.075$; data-to-parameter ratio $=25.6$.

In the title compound, $\left[\mathrm{CrCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{ClO}_{4}$, the $\mathrm{Cr}^{\text {III }}$ atom is coordinated equatorially by four N atoms of two propane-1,3-diamine (tn) ligands and axially by two mutually trans Cl atoms, thus displaying a slightly distorted octahedral geometry with no crystallographically imposed symmetry. The two sixmembered chair chelate rings in the complex cation are in an anti conformation with respect to each other. The $\mathrm{Cr}-\mathrm{N}$ bond lengths range from 2.0831 (18) to 2.0917 (19) \AA, and the $\mathrm{Cr}-$ Cl bond lengths are 2.3148 (6) and $2.3135(6) \AA$. The perchlorate anions have slightly distorted tetrahedral geometries. Weak intermolecular hydrogen bonds involving the tn ligand NH groups as donors, and chloride ligands and anion O atoms as acceptors are observed.

Related literature

For the synthesis, see: Couldwell \& House (1972); House (1970). For related structures, see: Choi et al. (2002, 2007, 2008, 2010); Vaughn \& Rogers (1985); Kou et al. (2001). For tn ligand geometry, see: Vaughn (1981). For the standard Cambridge Structural Database description, see: Allen (2002).

Experimental

Crystal data

```
\(\left[\mathrm{CrCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{ClO}_{4}\)
\(M_{r}=370.61\)
Monoclinic, \(P 2_{1} / c\)
\(a=6.4306\) (5) A
\[
\begin{aligned}
& b=17.2588(15) \AA \\
& c=13.0235(11) \AA \\
& \beta=92.840(4)^{\circ} \\
& V=1443.6(2) \AA^{3}
\end{aligned}
\]
```

$Z=4$
Mo $K \alpha$ radiation
$\mu=1.36 \mathrm{~mm}^{-1}$

Data collection

Bruker APEXII CCD diffractometer
Absorption correction: multi-scan (TWINABS; Sheldrick, 2008a)
$T_{\text {min }}=0.815, T_{\text {max }}=0.930$
$T=173 \mathrm{~K}$
$0.16 \times 0.08 \times 0.05 \mathrm{~mm}$

28308 measured reflections 6269 independent reflections 5585 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.039$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.075$
245 parameters
$S=1.07$
6269 reflections

All H -atom parameters refined
$\Delta \rho_{\text {max }}=0.36 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.32 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.85(3)$	$2.68(3)$	$3.3684(19)$	$139(2)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 1^{\text {ii }}$	$0.89(3)$	$2.77(3)$	$3.5229(19)$	$143(2)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 3^{\mathrm{i}}$	$0.81(3)$	$2.45(3)$	$3.182(3)$	$151(3)$
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 2$	$0.81(3)$	$2.67(3)$	$3.072(2)$	$112(2)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 4$	$0.86(3)$	$2.35(3)$	$3.134(3)$	$151(3)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 2$	$0.86(3)$	$2.56(3)$	$3.326(3)$	$149(3)$
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 2$	$0.87(3)$	$2.15(3)$	$3.000(3)$	$166(3)$
$\mathrm{N} 3-\mathrm{H} 3 B \cdots \mathrm{C} 2^{\text {iii }}$	$0.89(3)$	$2.58(3)$	$3.3168(19)$	$140(2)$
$\mathrm{N} 4-\mathrm{H} 4 A \cdots 1^{\text {iv }}$	$0.81(3)$	$2.28(3)$	$3.033(3)$	$156(3)$

Symmetry codes: (i) $x+1, y, z$; (ii) $-x+1,-y+1,-z+1$; (iii) $x-1, y, z$; (iv)
$-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.
Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008b); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL and local programs.

This work was supported by a grant from the 2010 Research Fund of Andong National University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2086).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Choi, J. H., Clegg, W., Harrington, R. W. \& Lee, S. H. (2010). J. Chem. Crystallogr. 40, 567-571.
Choi, J. H., Clegg, W., Nichol, G. S., Lee, S. H., Park, Y. C. \& Habibi, M. H. (2007). Spectrochim. Acta Part A, 68, 796-801.

Choi, J.-H., Lee, S. H. \& Lee, U. (2008). Acta Cryst. E64, m1429.
Choi, J.-H., Suzuki, T. \& Kaizaki, S. (2002). Acta Cryst. C58, m539-m541.
Couldwell, M. C. \& House, D. A. (1972). Inorg. Chem. 11, 2024-2031.
House, D. A. (1970). Inorg. Nucl. Chem. Lett. 6, 741-746.
Kou, H.-Z., Gao, D.-Z., Bu, W.-M., Fan, Y.-G., Liao, D.-Z., Cheng, P., Jiang, Z.-H., Yan, S.-P., Wang, G.-L., Li, T.-J. \& Tang, J.-K. (2001). Transition Met. Chem. 26, 457-460.
Sheldrick, G. M. (2008a). TWINABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.
Vaughn, J. W. (1981). Inorg. Chem. 20, 2397-2402.
Vaughn, J. W. \& Rogers, R. D. (1985). J. Crystallogr. Spectrosc. Res. 15, 281287.

supplementary materials

Acta Cryst. (2011). E67, m381 [doi:10.1107/S1600536811006349]

trans-Dichloridobis(propane-1,3-diamine- $\kappa^{2} N, N^{\prime}$)chromium(III) perchlorate

J.-H. Choi and W. Clegg

Comment

The $\left[\mathrm{Cr}(\mathrm{tn})_{2} L_{2}\right]^{+}$cation ($\mathrm{tn}=$ propane-1,3-diamine, $L=$ monodentate ligand) can exist as trans and cis geometric isomers. There are also two possible conformations with respect to the six-membered chelate rings (present as chairs) in the trans geometric isomer: the carbon atoms of these rings in the two th ligands can be located on the same side (syn conformer) or on opposite side (anti conformer) of the equatorial plane. In the crystal structures of trans- $\left[\mathrm{Cr}\left(\mathrm{Me}_{2} \mathrm{tn}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$ and trans$\left[\mathrm{Cr}\left(\mathrm{Me}_{2} \mathrm{tn}\right)_{2} \mathrm{Br}_{2}\right]_{2} \mathrm{Br}_{2} \cdot \mathrm{HClO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{Me}_{2} \mathrm{tn}=2,2\right.$-dimethylpropane-1,3-diamine), both syn and anti conformational isomers are found together (Choi et al., 2002; Choi et al., 2007), while trans- $\left[\mathrm{Cr}\left(\mathrm{Me}_{2} \mathrm{tn}_{2}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$ (Choi et al., 2008) has only the anti conformer, as do trans- $\left[\mathrm{Cr}(\operatorname{tn})_{2} \mathrm{~F}_{2}\right] \mathrm{ClO}_{4}$ (Vaughn \& Rogers, 1985) and trans- $\left[\mathrm{Cr}(\mathrm{tn})_{2} \mathrm{Cl}_{2}\right]_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{Kou}\right.$ et al., 2001). The preference for syn or anti conformation of chelate rings in trans complex cations with th or Me Me_{2} tn ligands is thus subtle and worthy of further study. Infrared and electronic absorption spectroscopic methods are not useful in distinguishing such syn and anti conformations in these metal complexes. Structural studies of bromido-containing chromium(III) complexes are relatively rare compared to those with chlorido ligands. Therefore we attempted to prepare trans- $\left[\mathrm{Cr}(\mathrm{tn})_{2} \mathrm{Br}_{2}\right] \mathrm{ClO}_{4}$ by a literature method (Couldwell \& House, 1972); its UV-visible and IR spectra are nearly the same as those of trans$\left[\mathrm{Cr}(\operatorname{tn})_{2} \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$ (House, 1970), and it was only with a crystal structure analysis that we established that the product was actually the dichlorido rather than the dibromido complex. We report here the structure of $\operatorname{trans}-\left[\mathrm{Cr}(\mathrm{tn})_{2} \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$ (I) which provides further information on the conformation of the two six-membered chelate rings.

In the title complex (I), the chromium(III) ion is coplanar with the four coordinating N atoms and adopts an octahedral geometry, in which the four nitrogen atoms of two tn ligands occupy the equatorial sites and the two chlorine atoms coordinate axially in a trans configuration. The two six-membered rings have their usual stable chair conformations, and they are exclusively in the anti conformation with respect to each other in the unique cation of the asymmetric unit (Fig. 1).

The $\mathrm{Cr}-\mathrm{N}$ distances (Table 1) are in the range 2.0831 (18)-2.0917 (19) \AA, typical for $\mathrm{Cr}-\mathrm{N}$ bonds involving primary amines (Choi et al., 2002; Choi et al., 2007). The Cr - Cl distances [2.3135 (6) and 2.3148 (6) \AA] are very close to the values 2.3179 (9) and 2.3212 (4) \AA found in trans-[$\left.\mathrm{Cr}\left(\mathrm{Me}_{2} \mathrm{tn}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$ (Choi et al., 2008), and typical generally of $\mathrm{Cr}-\mathrm{Cl}$ bond lengths in the Cambridge Structural Database (Allen, 2002), but shorter than the 2.4743 (10) \AA for $\mathrm{Cr}-\mathrm{Br}$ bond lengths in trans- $\left[\mathrm{Cr}(\mathrm{en})_{2} \mathrm{Br}_{2}\right] \mathrm{ClO}_{4}$ (Choi et al., 2010). The assignment of the axial ligands as Cl rather than the Br intended and expected from the synthesis is also clearly correct from the satisfactory refinement of anisotropic displacement parameters, demonstrating an appropriate electron density. The internal geometry of the tn ligands is typical for these in chair conformations (Vaughn, 1981). The uncoordinated $\mathrm{ClO}_{4}{ }^{-}$anion shows an essentially tetrahedral arrangement with $\mathrm{Cl}-\mathrm{O}$ distances in the range $1.4268(19)-1.4380(19) \AA$ and the angles at Cl ranging from 108.32 (11) to 110.48 (13) ${ }^{\circ}$. There is an extensive weak hydrogen bonding network involving the oxygen atoms of the anions, chlorido ligands, and the $\mathrm{N}-\mathrm{H}$ groups of the tn ligands (Table 2), which supports the main ionic interactions in this complex salt.

supplementary materials

Experimental

The ligand propane-1,3-diamine was obtained from Aldrich Chemical Co. and was used as supplied. All other chemicals were reagent grade materials and were used without further purification. We intended to prepare trans-[$\left.\mathrm{Cr}(\mathrm{tn})_{2} \mathrm{Br}_{2}\right] \mathrm{ClO}_{4}$ as described in the literature (Couldwell \& House, 1972) but obtained instead trans- $\left[\mathrm{Cr}(\operatorname{tn})_{2} \mathrm{Cl}_{2}\right] \mathrm{ClO}_{4}$, as demonstrated by this crystal structure analysis.
$\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(5.4 \mathrm{~g})$ was dissolved in DMSO $(25 \mathrm{ml})$ and the solution was boiled for 10 min . A mixture of 1,3-propanediamine (3 ml) and DMSO (15 ml) was added and boiling was continued for 2 min . After cooling to $60^{\circ} \mathrm{C}$, the solution was poured into well stirred acetone $(300 \mathrm{ml})$. The precipitate was filtered off and washed with acetone, then dissolved in aqueous $\mathrm{HBr}(20 \mathrm{ml}, 48 \%)$ and the solution was heated on a steam bath for 15 min . and filtered. The filtrate was heated on a steam bath for a further 15 min . Aqueous $\mathrm{HClO}_{4}(5 \mathrm{ml}, 60 \%)$ was added to the solution. The resulting green crystals were collected and washed with ethanol. The infrared spectrum (nujol) was consistent with the crystallographically determined structure. The chloro ligands in the title compound are clearly retained from the chromium(III) chloride starting material, and were not substituted as intended by Br in the reaction with HBr .

Refinement

The crystal was a non-merohedral twin with a $23.45(6) \%$ contribution of the minor component according to the refinement; because of the twinning, merging of symmetry-equivalent data could not be performed prior to refinement. The twin law is $100 / 0-10 /-0.20-1$, corresponding to a 180° rotation about the a axis. Hydrogen atoms were located in a difference map and refined freely with individual isotropic displacement parameters.

Figures

Fig. 1. The structure of the complex cation and anion (displacement ellipsoids are drawn at the 50% probability level).

trans-Dichloridobis(propane-1,3-diamine- $\kappa^{2} N, N^{\prime}$)chromium(III) perchlorate

Crystal data

$\left[\mathrm{CrCl}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{~N}_{2}\right)_{2}\right] \mathrm{ClO}_{4}$
$M_{r}=370.61$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=6.4306$ (5) \AA
$b=17.2588(15) \AA$
$c=13.0235(11) \AA$
$F(000)=764$
$D_{\mathrm{x}}=1.705 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6530 reflections
$\theta=2.8-28.3^{\circ}$
$\mu=1.36 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$

$$
\begin{aligned}
& \beta=92.840(4)^{\circ} \\
& V=1443.6(2) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: sealed tube
graphite
Thin-slice ω scans
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2008a)
$T_{\text {min }}=0.815, T_{\text {max }}=0.930$
28308 measured reflections

Block, green
$0.16 \times 0.08 \times 0.05 \mathrm{~mm}$

6269 independent reflections

5585 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=28.4^{\circ}, \theta_{\text {min }}=2.0^{\circ}$
$h=-8 \rightarrow 8$
$k=0 \rightarrow 23$
$l=0 \rightarrow 17$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.075$
$S=1.07$
6269 reflections
245 parameters
0 restraints

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0391 P)^{2}+1.9009 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.36$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.32$ e \AA^{-3}
Extinction correction: SHELXTL (Sheldrick, 2008a),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.0011 (6)

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Cr	$0.49360(5)$	$0.396455(18)$	$0.29650(2)$	$0.01236(9)$
$\mathrm{Cl1}$	$0.24916(7)$	$0.41493(3)$	$0.41882(4)$	$0.01906(12)$

Cl 2	0.74177 (7)	0.37755 (3)	0.17627 (4)	0.01921 (12)
N1	0.7262 (3)	0.42985 (10)	0.40534 (14)	0.0149 (3)
H1A	0.840 (4)	0.4296 (16)	0.375 (2)	0.026 (7)*
H1B	0.707 (4)	0.4791 (15)	0.4214 (19)	0.015 (6)*
N2	0.5301 (3)	0.28012 (11)	0.33866 (15)	0.0177 (4)
H2A	0.619 (5)	0.2656 (17)	0.301 (2)	0.028 (8)*
H2B	0.417 (5)	0.2552 (18)	0.321 (2)	0.039 (8)*
N3	0.2572 (3)	0.36594 (12)	0.18892 (14)	0.0182 (4)
H3A	0.258 (4)	0.3159 (17)	0.182 (2)	0.027 (7)*
H3B	0.138 (5)	0.3757 (16)	0.219 (2)	0.030 (8)*
N4	0.4523 (3)	0.51159 (11)	0.25055 (15)	0.0194 (4)
H4A	0.556 (4)	0.5348 (16)	0.271 (2)	0.024 (7)*
H4B	0.356 (5)	0.5272 (16)	0.284 (2)	0.029 (8)*
C1	0.7561 (3)	0.38579 (13)	0.50303 (17)	0.0190 (4)
H1C	0.872 (4)	0.4054 (15)	0.543 (2)	0.022 (7)*
H1D	0.634 (4)	0.3944 (13)	0.5441 (19)	0.011 (6)*
C2	0.7850 (4)	0.29977 (13)	0.48554 (19)	0.0236 (5)
H2C	0.894 (4)	0.2925 (15)	0.439 (2)	0.022 (7)*
H2D	0.821 (4)	0.2755 (17)	0.550 (2)	0.034 (8)*
C3	0.5888 (4)	0.25891 (13)	0.44656 (18)	0.0222 (5)
H3C	0.605 (4)	0.2040 (16)	0.450 (2)	0.024 (7)*
H3D	0.476 (4)	0.2728 (15)	0.490 (2)	0.023 (7)*
C4	0.2446 (4)	0.40246 (14)	0.08533 (18)	0.0232 (5)
H4C	0.366 (4)	0.3889 (15)	0.051 (2)	0.022 (7)*
H4D	0.121 (4)	0.3793 (15)	0.045 (2)	0.021 (6)*
C5	0.2255 (4)	0.48944 (15)	0.09247 (19)	0.0244 (5)
H5C	0.203 (4)	0.5077 (16)	0.021 (2)	0.032 (8)*
H5D	0.104 (4)	0.5017 (16)	0.129 (2)	0.029 (7)*
C6	0.4160 (4)	0.52997 (14)	0.13932 (19)	0.0242 (5)
H6C	0.542 (4)	0.5136 (15)	0.106 (2)	0.021 (6)*
H6D	0.403 (4)	0.5848 (17)	0.135 (2)	0.029 (7)*
Cl3	0.07592 (8)	0.14746 (3)	0.25004 (4)	0.01984 (12)
O1	0.1011 (3)	0.06757 (10)	0.22292 (16)	0.0363 (4)
O2	0.1833 (3)	0.19442 (11)	0.17838 (16)	0.0384 (5)
O3	-0.1425 (3)	0.16517 (11)	0.24445 (15)	0.0358 (4)
O4	0.1632 (3)	0.16154 (14)	0.35117 (15)	0.0475 (5)

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cr	$0.00998(15)$	$0.01357(16)$	$0.01352(17)$	$-0.00015(11)$	$0.00047(11)$	$-0.00070(12)$
$\mathrm{Cl1}$	$0.0142(2)$	$0.0238(3)$	$0.0196(3)$	$0.00007(18)$	$0.00468(18)$	$-0.00218(19)$
C 2	$0.0131(2)$	$0.0257(3)$	$0.0190(3)$	$0.00135(18)$	$0.00347(18)$	$-0.00246(19)$
N 1	$0.0135(8)$	$0.0154(9)$	$0.0160(9)$	$-0.0014(6)$	$0.0014(6)$	$-0.0011(7)$
N 2	$0.0171(8)$	$0.0166(9)$	$0.0192(9)$	$-0.0015(7)$	$-0.0009(7)$	$-0.0017(7)$
N 3	$0.0133(8)$	$0.0238(10)$	$0.0175(9)$	$-0.0010(7)$	$-0.0003(7)$	$-0.0028(7)$
N 4	$0.0197(9)$	$0.0179(9)$	$0.0206(10)$	$0.0006(7)$	$0.0006(8)$	$0.0014(7)$
C 1	$0.0222(10)$	$0.0194(10)$	$0.0150(10)$	$-0.0019(8)$	$-0.0024(8)$	$-0.0007(8)$

sup-4

supplementary materials

C2	$0.0281(12)$	$0.0194(11)$	$0.0226(12)$	$0.0020(9)$	$-0.0065(10)$	$0.0011(9)$
C3	$0.0310(12)$	$0.0155(10)$	$0.0201(11)$	$-0.0035(9)$	$-0.0004(9)$	$0.0030(8)$
C4	$0.0191(10)$	$0.0338(13)$	$0.0164(11)$	$0.0023(9)$	$-0.0017(8)$	$-0.0017(9)$
C5	$0.0210(11)$	$0.0329(13)$	$0.0193(11)$	$0.0081(9)$	$0.0005(9)$	$0.0048(9)$
C6	$0.0269(11)$	$0.0243(12)$	$0.0216(11)$	$0.0040(9)$	$0.0031(9)$	$0.0080(9)$
C13	$0.0206(2)$	$0.0175(2)$	$0.0210(3)$	$-0.00116(19)$	$-0.00290(19)$	$-0.00153(19)$
O1	$0.0380(10)$	$0.0179(8)$	$0.0530(13)$	$0.0042(7)$	$0.0012(9)$	$-0.0030(8)$
O2	$0.0452(11)$	$0.0343(10)$	$0.0364(11)$	$-0.0138(9)$	$0.0092(9)$	$0.0050(8)$
O3	$0.0246(9)$	$0.0394(10)$	$0.0434(12)$	$0.0087(8)$	$0.0019(8)$	$-0.0052(9)$
O4	$0.0523(13)$	$0.0653(15)$	$0.0235(10)$	$-0.0131(11)$	$-0.0121(9)$	$-0.0053(10)$

Geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{Cr}-\mathrm{Cl1}$	2.3148 (6)
$\mathrm{Cr}-\mathrm{Cl} 2$	2.3135 (6)
$\mathrm{Cr}-\mathrm{N} 1$	2.0903 (18)
$\mathrm{Cr}-\mathrm{N} 2$	2.0917 (19)
$\mathrm{Cr}-\mathrm{N} 3$	2.0831 (18)
$\mathrm{Cr}-\mathrm{N} 4$	2.0884 (19)
N1-H1A	0.85 (3)
N1-H1B	0.89 (3)
N1-C1	1.486 (3)
N2-H2A	0.81 (3)
N2-H2B	0.86 (3)
N2-C3	1.483 (3)
N3-H3A	0.87 (3)
N3-H3B	0.89 (3)
N3-C4	1.488 (3)
N4-H4A	0.81 (3)
N4-H4B	0.82 (3)
N4-C6	1.490 (3)
C1-H1C	0.95 (3)
$\mathrm{Cl} 1-\mathrm{Cr}-\mathrm{Cl} 2$	179.11 (2)
$\mathrm{Cl} 1-\mathrm{Cr}-\mathrm{N} 1$	89.02 (5)
$\mathrm{Cl} 1-\mathrm{Cr}-\mathrm{N} 2$	91.31 (6)
$\mathrm{Cl} 1-\mathrm{Cr}-\mathrm{N} 3$	90.00 (6)
$\mathrm{Cl} 1-\mathrm{Cr}-\mathrm{N} 4$	89.14 (6)
$\mathrm{Cl} 2-\mathrm{Cr}-\mathrm{N} 1$	90.19 (5)
$\mathrm{Cl} 2-\mathrm{Cr}-\mathrm{N} 2$	88.28 (6)
$\mathrm{Cl} 2-\mathrm{Cr}-\mathrm{N} 3$	90.80 (6)
$\mathrm{Cl} 2-\mathrm{Cr}-\mathrm{N} 4$	91.29 (6)
$\mathrm{N} 1-\mathrm{Cr}-\mathrm{N} 2$	91.11 (7)
$\mathrm{N} 1-\mathrm{Cr}-\mathrm{N} 3$	178.42 (8)
$\mathrm{N} 1-\mathrm{Cr}-\mathrm{N} 4$	90.49 (7)
$\mathrm{N} 2-\mathrm{Cr}-\mathrm{N} 3$	90.15 (8)
$\mathrm{N} 2-\mathrm{Cr}-\mathrm{N} 4$	178.34 (8)
$\mathrm{N} 3-\mathrm{Cr}-\mathrm{N} 4$	88.26 (8)
$\mathrm{Cr}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	106.5 (19)
$\mathrm{Cr}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	108.7 (16)

C1-H1D	0.98 (2)
C1-C2	1.515 (3)
C2-H2C	0.95 (3)
C2-H2D	0.96 (3)
C2-C3	1.511 (3)
C3-H3C	0.95 (3)
C3-H3D	0.97 (3)
C4-H4C	0.95 (3)
C4-H4D	1.02 (3)
C4-C5	1.510 (3)
C5-H5C	0.99 (3)
C5-H5D	0.95 (3)
C5-C6	1.513 (3)
C6-H6C	0.98 (3)
C6-H6D	0.95 (3)
Cl3-O1	1.4346 (18)
$\mathrm{Cl} 3-\mathrm{O} 2$	1.4380 (19)
Cl3-O3	1.4360 (18)
C13-O4	1.4268 (19)
N1-C1-C2	112.60 (19)
H1C-C1-H1D	106 (2)
$\mathrm{H} 1 \mathrm{C}-\mathrm{C} 1-\mathrm{C} 2$	109.5 (15)
H1D-C1-C2	109.7 (13)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	108.8 (16)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{D}$	108.8 (18)
C1-C2-C3	113.6 (2)
$\mathrm{H} 2 \mathrm{C}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{D}$	110 (2)
$\mathrm{H} 2 \mathrm{C}-\mathrm{C} 2-\mathrm{C} 3$	110.8 (16)
$\mathrm{H} 2 \mathrm{D}-\mathrm{C} 2-\mathrm{C} 3$	104.7 (17)
N2-C3-C2	111.85 (19)
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	108.4 (16)
N2-C3-H3D	108.9 (16)
C2-C3-H3C	111.0 (16)
C2-C3-H3D	109.1 (16)
$\mathrm{H} 3 \mathrm{C}-\mathrm{C} 3-\mathrm{H} 3 \mathrm{D}$	107 (2)
N3-C4-H4C	108.4 (16)

$\mathrm{Cr}-\mathrm{N} 1-\mathrm{C} 1$	119.81 (13)
H1A-N1-H1B	104 (2)
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{C} 1$	108.7 (19)
H1B-N1-C1	107.6 (16)
$\mathrm{Cr}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	102 (2)
$\mathrm{Cr}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	109 (2)
$\mathrm{Cr}-\mathrm{N} 2-\mathrm{C} 3$	120.38 (14)
H2A-N2-H2B	107 (3)
$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{C} 3$	110 (2)
$\mathrm{H} 2 \mathrm{~B}-\mathrm{N} 2-\mathrm{C} 3$	108 (2)
$\mathrm{Cr}-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~A}$	108.3 (19)
$\mathrm{Cr}-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B}$	105.8 (19)
$\mathrm{Cr}-\mathrm{N} 3-\mathrm{C} 4$	120.53 (14)
H3A-N3-H3B	104 (3)
H3A-N3-C4	109.2 (19)
H3B-N3-C4	107.9 (19)
$\mathrm{Cr}-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~A}$	107 (2)
$\mathrm{Cr}-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B}$	104 (2)
$\mathrm{Cr}-\mathrm{N} 4-\mathrm{C} 6$	119.53 (15)
H4A-N4-H4B	107 (3)
H4A-N4-C6	108 (2)
H4B-N4-C6	111 (2)
N1-C1-H1C	110.3 (16)
N1-C1-H1D	108.4 (14)
$\mathrm{Cl} 1-\mathrm{Cr}-\mathrm{N} 1-\mathrm{C} 1$	59.00 (15)
$\mathrm{Cl} 2-\mathrm{Cr}-\mathrm{N} 1-\mathrm{Cl}$	-120.57 (15)
$\mathrm{N} 2-\mathrm{Cr}-\mathrm{N} 1-\mathrm{C} 1$	-32.28 (16)
$\mathrm{N} 4-\mathrm{Cr}-\mathrm{N} 1-\mathrm{C} 1$	148.14 (16)
$\mathrm{Cl} 1-\mathrm{Cr}-\mathrm{N} 2-\mathrm{C} 3$	-56.16 (16)
$\mathrm{Cl} 2-\mathrm{Cr}-\mathrm{N} 2-\mathrm{C} 3$	123.04 (16)
$\mathrm{N} 1-\mathrm{Cr}-\mathrm{N} 2-\mathrm{C} 3$	32.88 (17)
$\mathrm{N} 3-\mathrm{Cr}-\mathrm{N} 2-\mathrm{C} 3$	-146.17 (17)
$\mathrm{Cl} 1-\mathrm{Cr}-\mathrm{N} 3-\mathrm{C} 4$	130.33 (16)
$\mathrm{Cl} 2-\mathrm{Cr}-\mathrm{N} 3-\mathrm{C} 4$	-50.08 (16)
$\mathrm{N} 2-\mathrm{Cr}-\mathrm{N} 3-\mathrm{C} 4$	-138.36 (17)
$\mathrm{N} 4-\mathrm{Cr}-\mathrm{N} 3-\mathrm{C} 4$	41.19 (17)

$\mathrm{N} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{D}$	$108.1(15)$
$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5$	$111.49(19)$
$\mathrm{H} 4 \mathrm{C}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{D}$	$107(2)$
$\mathrm{H} 4 \mathrm{C}-\mathrm{C} 4-\mathrm{C} 5$	$110.2(16)$
$\mathrm{H} 4 \mathrm{D}-\mathrm{C} 4-\mathrm{C} 5$	$111.1(14)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{C}$	$105.6(16)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{D}$	$108.8(17)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$114.71(19)$
$\mathrm{H} 5 \mathrm{C}-\mathrm{C} 5-\mathrm{H} 5 \mathrm{D}$	$108(2)$
$\mathrm{H} 5 \mathrm{C}-\mathrm{C} 5-\mathrm{C} 6$	$108.0(16)$
$\mathrm{H} 5 \mathrm{D}-\mathrm{C} 5-\mathrm{C} 6$	$111.2(17)$
$\mathrm{N} 4-\mathrm{C} 6-\mathrm{C} 5$	$112.24(19)$
$\mathrm{N} 4-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	$106.3(15)$
$\mathrm{N} 4-\mathrm{C} 6-\mathrm{H} 6 \mathrm{D}$	$106.0(17)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{C}$	$110.9(15)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{D}$	$111.8(17)$
$\mathrm{H} 6 \mathrm{C}-\mathrm{C} 6-\mathrm{H} 6 \mathrm{D}$	$109(2)$
$\mathrm{O} 1-\mathrm{Cl} 3-\mathrm{O} 2$	$108.55(12)$
$\mathrm{O} 1-\mathrm{Cl} 3-\mathrm{O} 3$	$108.32(11)$
$\mathrm{O} 1-\mathrm{Cl} 3-\mathrm{O} 4$	$110.29(13)$
$\mathrm{O} 2-\mathrm{Cl} 3-\mathrm{O} 3$	$110.30(12)$
$\mathrm{O} 2-\mathrm{Cl} 3-\mathrm{O} 4$	$108.88(13)$
$\mathrm{O} 3-\mathrm{Cl} 3-\mathrm{O} 4$	$110.48(13)$
$\mathrm{Cl} 4-\mathrm{Cr}-\mathrm{N} 4-\mathrm{C} 6$	
$\mathrm{C} 2-\mathrm{Cr}-\mathrm{N} 4-\mathrm{C} 6$	$-130.76(17)$
$\mathrm{N} 1-\mathrm{Cr}-\mathrm{N} 4-\mathrm{C} 6$	$50.02(17)$
$\mathrm{N} 3-\mathrm{Cr}-\mathrm{N} 4-\mathrm{C} 6$	$140.22(17)$
$\mathrm{Cr}-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-40.74(17)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$53.7(2)$
$\mathrm{Cr}-\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 2$	$-71.2(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 2$	$-54.3(2)$
$\mathrm{Cr}-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5$	$71.1(3)$
$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-58.4(2)$
$\mathrm{Cr}-\mathrm{N} 4-\mathrm{C} 6-\mathrm{C} 5$	$67(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 4$	

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D-\mathrm{H} \cdots \mathrm{A}$	$D-\mathrm{H}$	H \cdots A	${ }^{\cdots} \cdots$	$D-\mathrm{H} \cdots A$
N1-H1A $\cdots \mathrm{Cl} 1^{\text {i }}$	0.85 (3)	2.68 (3)	3.3684 (19)	139 (2)
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.89 (3)	2.77 (3)	3.5229 (19)	143 (2)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 3{ }^{\text {i }}$	0.81 (3)	2.45 (3)	3.182 (3)	151 (3)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{Cl} 2$	0.81 (3)	2.67 (3)	3.072 (2)	112 (2)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 4$	0.86 (3)	2.35 (3)	3.134 (3)	151 (3)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{O} 2$	0.86 (3)	2.56 (3)	3.326 (3)	149 (3)
$\mathrm{N} 3-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O} 2$	0.87 (3)	2.15 (3)	3.000 (3)	166 (3)
N3-H3B $\cdots \mathrm{Cl} 2^{\text {iii }}$	0.89 (3)	2.58 (3)	3.3168 (19)	140 (2)

supplementary materials

$\mathrm{N} 4 — \mathrm{H} 4 \mathrm{~A} \cdots \mathrm{O} 1^{\text {iv }}$	$0.81(3)$	$2.28(3)$
Symmetry codes: (i) $x+1, y, z ;$ (ii) $-x+1,-y+1,-z+1$; (iii) $x-1, y, z ;$ (iv) $-x+1, y+1 / 2,-z+1 / 2$.	$156(3)$	

Fig. 1

